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C O N C E R N I N G  T H E  E X I S T E N C E  O F  W A L L  T E R M S  I N  
A T H R E E - P A R A M E T E R  M O D E L  O F  T U R B U L E N C E  

A. N. Volobuyev and A. P. Tolstonogov UDC 532.5.52 

We show the existence of  a wall term in the equation for (UlU2) in a three-parameter model of  turbulence bY 
analogy with the known terms in an "E-e" model  We suggest a convenient system of  differential equations 
for the boundary layer on a flat plate in fluid f low at small Reynolds numberse. We f ind the limiting 
calculated value of  the turbulent Reynolds number at which wall terms must be taken into consideration. 

In [ 1 ] a system of differential equations of a turbulent boundary layer was considered that consisted of 

equations of momentum, continuity, turbulence energy E = (uiui)/2 , second moments of velocity pulsations 

(u I u2), and total rate of turbulence energy dissipation: 

if Oxi) Ox] Ox i Ox i Ox i 

It was also noted that if one takes into account the total dissipation of turbulence energy, rather than its 

isotropic part el, then in the differential equations for E and e wall terms appear that, after some simplifications, 

take the form suggested in [2]. Moreover, in [1 ] the equation for (utuz) was used in the form presented in [31, 
where there are no wall terms whatsoever. 

The use of an equation for the total rate of turbulence energy dissipation rather than its isotropic part is 

essential in boundary layer calculations, since in some cases, as shown in [1 ], the anisotropic part of dissipation 

e 2 in the wall layer is much greater than e I. As follows from the logic of [1 ], this is associated with the existence 

of significant wall terms in equations for turbulence energy and total turbulence energy dissipation. 

The aim of the present work is determination of the wall term in the equation for (ulu2), determination of 

a convenient form of its statement for calculations and of the conditions under which the wall terms should be taken 

into account in practical calculations of a turbulent boundary layer. 

Let us write the equation for the correlation of velocity pulsations (uiuy) in the form given in [4 l: 

d(uiuj----~)=d--~-[vO(UiUi)-(uiuyu')] - d t  Ox k Ox, 

t9 -~ixi(quj) +-~xj(qtti ) +-~ q tOXy+ OXi) 

(oui ) ovi 2 v  - . ( 2 )  

- ( u j . k )  - ( . i " k )  o x  k - o x  t o x  l 

Here summation is performed over repeated indices. The terms that in Eq. (2) should be identified with the wall 

term have the form 

e 3 = - 2v Ox---~l Ox I . 
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For the plane case i *, 1, j = 2, l = 1, 2; consequently, 

( O u ,  O u 2 ) ( O u t  Ou2)  
e 3 = - 2v Ox I Ox I - 2v Ox~ .Ox 2 " (4) 

Using the continuity equation OUa/OX a ---- O, we transform Eq. (4) to the form 

( ) (  ) (ou, O U 2 0 u 2  OuI OUl  = 2 v  . 

e 3 = 2v Ox 2 Ox I + 2v Ox~ 2 d x  I Ox i Oxj . 
(5) 

Thus, proceeding from Eqs. (3) and (5), the wall term in Eq. (2) is 

(OUt Out Ou i Ou l )  
e 3 = v ~ ~ Ox t Ox, " (6) 

In [ 3 ]  it is a s s u m e d  t h a t  t h e  a p p r o x i m a t i o n  of  e 3 h a s  t h e  s a m e  f o r m  as  t he  t e r m  

(q((Oui/Oxi) + (Oui/Oxi))) in Eq. (2); therefore,  their sum is replaced by the expression -Cl(e/E)(uiuj) .  However, 

while this is valid for the above term with pressure pulsations, the quantity t 3 requires a more thorough analysis. 

Proceeding from Eq. (6), the value of e 3 for plane flow can be transformed to 

/ 

Squaring both sides of Eq. (7) and using the continuity equation, we obtain 

Here  the expression in square brackets is equal to the difference between the instantaneous values of the isotropic 

and anisotropic parts of the turbulence energy dissipation rate: 

OU i OU i OUjl 
~" - ~'2 = v (oO~u~j ~ Ox/ oxi) " (9) 

Moreover, proceeding from [5 ], the instantaneous value of the total dissipation of turbulence energy 

(• 

Substituting Eqs. (9) and (10) into Eq. (8), we obtain 

(10) 

e 3 = - -  _ ( 1 1 )  

Up to now, we have carried out only identity transformations of the quantity e 3. Now, let us reduce Eq. 

(11) to a form convenient for calculations. 

We replace the instantaneous values of energy dissipation by mean values; moreover, we use the expression 

for e 2 obtained in [l ]: 

2 02E 
e 2 = - - v 2" (12) 

3 Ox 2 

After substitution of Eq. (12) into Eq. (11) and simple transformations,  the wall term e 3 in the equation 

f o r  ( / / i / / 2 )  takes the form 
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2 4 O2E (13) 
e3--- e e +  v 

Ox 2 

Now, we write a total system of equations for calculating a steady-state turbulent boundary layer on a 
plane wall with allowance for Eq. (13): 

momentum equation 

continuity equation 

PUI ~ + PU2 0x 2 ~ - dx-~ + ~ ~ - 19 (UlU2) ; (14) 

0/901 aPU2 (15) 
+ - - = 0 ;  

OX I OX 2 

turbulence energy equation 

pv,  ~ + pu2 - + - 
OX2 OX2 "~E 

OU l 2 O2E 
P(UlU2)~'~x2 - P e - ;  It 2 ;  

OX 2 

(16) 

equation of the turbulence energy dissipation rate 

PuI ~ + Pu2 0x2 = Ox2 + 

2 
e OU l e 0 (UlU2) O2UI 

- - p  ( , , l u g )  ~ - Z o  - - Z , ,  - -  2 
E E Ox 2 Ox 2 

(17) 

equation for the second moments of velocity pulsations 

pu, ox---7- + pv~ ox----F-= ox--S + ~ ox2 

[( - c ,  p(.~.2~+ o, ,2)+~--~ p ~ ~+-v--i3 o~,2 

The system of differential equations (14)-(18) makes it possible to calculate a turbulent boundary layer 

on a flat plate in a greater detail than in [1-3 ], since in this case all effects are included that are associated with 

a noticeable influence of the wall on fluid flow at low Reynolds numbers. For practical calculations it is necessary 

to find the conditions under which the wall terms in Eqs. (16), (17), and (18) are significant. To elucidate this, 

we will consider the physical meaning of the quantity e32 in Eq. (11). The form of notation of this quantity makes 

it possible to conclude that it characterizes the difference between the dissipations of the isotropic and anisotropic 

parts of turbulence. 
In the case of the large turbulence Reynolds number R = LgvrE/v the turbulence energy dissipates mainly 

due to the decomposition of small isotropic vortices according to Kolmogorov's theory of "local isotropy" [61, and 

the total dissipation of turbulence energy is expressed by the relation 16, p. 1801 

3 
3 u (19) 

e I = e = ' ~ A  L---'f- 
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Taking into account that U '  --- ~ and assuming on the average that A = 1.1, we obtain 

E3/2 (20) 
r = 0.9'  Lf 

Using the relationship Lg = 0 .SLf  [4, p. 203 ], we find the total dissipation of turbulence energy 

s  E (21) 
e I = 0.45 - 0.45vR _--~. 

Lg Lg 

At small Reynolds numbers the dissipation of anisotropic vortices is observed which is manifested mainly 

in the wall region of fluid flow. Since the wall terms in Eqs. (16) and (17) characterize the anisotropic part of 

dissipation, in the case of e 2 << t I they can be neglected in Eqs. (16)-(18).  On the other  hand,  when turbulence 

degenerates in the wall region, the decisive role in the total dissipation of turbulence energy is played by its 

anisotropic part e 2 >> e I [1 ]. Taking into account the fact that at the final stage of turbulence degenerat ion the 

dissipation of its energy is governed by the quantity e = - d E / d t  and that E = cons t / t  5/2, then, according to [6, 

p. 1581, we obtain 

s z (22) 
e - 2 t .  

Using the expression for the coefficient of the longitudinal correlation of velocity pulsations between points 

located r apart f ( r ,  t) = exp ( - r 2 / S v t )  [4, p. 194 ], we find the longitudinal integral scale of turbulence [4, p. 66 ]: 

~ LI = ~ f (r, t) dr = T (Svt) l /2 (23) 
o 

Going over to the transverse scale of turbulence, we have 

2 ~r (24) Lg = -~ vt  . 

Combining relations (22) and (24), we find that at small values of R the anisotropic part of dissipation is 

equal to 

e (2s) 
2" 

4 Lg 

Comparing Eqs. (21) and (25), we determine the boundary turbulence Reynolds number  R = 8.7. 

Thus,  if R < 8.7, then in calculations of the boundary layer on a plane wall it is necessary to take into 

account the wall terms in Eqs. (16)-(18).  

As turbulence in a flow attains a developed stage and, consequently,  the role of the wall terms in these 

equations is decreased, the numerical coefficient in the expression for e, Eq. (25), changes from 5 : r / 4  to 0.45R, 

Eq. (21). As a result, the estimate obtained for the boundary turbulence Reynolds number  R is minimal and can 

be used in calculations as a preliminary one. 

N O T A T I O N  

U i and u i, components of mean velocity and velocity pulsations; p and q, mean pressure and pressure 

pulsations; t and e ,  mean and instantaneous values of turbulence energy dissipation rate; p,  densi ty;  v and/~,  

kinematic and dynamic viscosities; C I, C 2, C/,, o E, a~, at ,  constant  values; /~t = C/~P E 2 / e ,  turbulent  dynamic  

viscosity; x i, coordinate of flow; t, time; Lg, Lf, transverse and longitudinal integral scales of turbulence; U ', 

mean-square rate of pulsations; A, coefficient equal to 0 .8 -1 .4 .  
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